841 research outputs found

    Consistency checking of financial derivatives transactions

    Get PDF

    Current Perspective on MDMA-Assisted Psychotherapy for Posttraumatic Stress Disorder

    Get PDF
    The present paper discusses the current literature with regard to substance-assisted psychotherapy with Methylenedioxymethamphetamine (MDMA) for posttraumatic stress disorder (PTSD). The aim of the paper is to give a comprehensive overview of the development from MDMA’s early application in psychotherapy to its present and future role in the treatment of PTSD. It is further attempted to increase the attention for MDMA’s therapeutic potential by providing a thorough depiction of the scientific evidence regarding its theorized mechanism of action and potential harms of its application in the clinical setting (e.g., misattribution of therapeutic gains to medication instead of psychological changes). Empirical support for the use of MDMA-assisted psychotherapy, including the randomized, double-blind, placebo-controlled trails that have been conducted since 2008, is discussed. Thus far, an overall remission rate of 66.2% and low rates of adverse effects have been found in the six phase two trials conducted in clinical settings with 105 blinded subjects with chronic PTSD. The results seem to support MDMA’s safe and effective use as an adjunct to psychotherapy. Even though preliminary studies may look promising, more studies of its application in a psychotherapeutic context are needed in order to establish MDMA as a potential adjunct to therapy

    Current perspective on the therapeutic preset for substance-assisted psychotherapy

    Get PDF
    The present narrative review is the first in a series of reviews about the appropriate conduct in substance-assisted psychotherapy (SAPT). It outlines a current perspective on preconditions and theoretical knowledge that have been identified as valuable in the literature for appropriate therapeutic conduct in SAPT. In this context, considerations regarding ethics and the spiritual emphasis of the therapeutic approaches are discussed. Further, current methods, models, and concepts of psychological mechanism of action and therapeutic effects of SAPT are summarized, and similarities between models, approaches, and potential mediators for therapeutic effects are outlined. It is argued that a critical assessment of the literature might indicate that the therapeutic effect of SAPT may be mediated by intra- and interpersonal variables within the therapeutic context rather than specific therapeutic models per se. The review provides a basis for the development and adaptation of future investigations, therapeutic models, training programs for therapists, and those interested in the therapeutic potential of SAPT. Limitations and future directions for research are discussed

    Human iPSC-derived astrocytes transplanted into the mouse brain undergo morphological changes in response to amyloid-beta plaques

    Get PDF
    BACKGROUND: Increasing evidence for a direct contribution of astrocytes to neuroinflammatory and neurodegenerative processes causing Alzheimer’s disease comes from molecular and functional studies in rodent models. However, these models may not fully recapitulate human disease as human and rodent astrocytes differ considerably in morphology, functionality, and gene expression. RESULTS: To address these challenges, we established an approach to study human astrocytes within the mouse brain by transplanting human induced pluripotent stem cell (hiPSC)-derived astrocyte progenitors into neonatal brains. Xenografted hiPSC-derived astrocyte progenitors differentiated into astrocytes that integrated functionally within the mouse host brain and matured in a cell-autonomous way retaining human-specific morphologies, unique features, and physiological properties. In Alzheimer´s chimeric brains, transplanted hiPSC-derived astrocytes responded to the presence of amyloid plaques undergoing morphological changes that seemed independent of the APOE allelic background. CONCLUSIONS: In sum, we describe here a promising approach that consist of transplanting patient-derived and genetically modified astrocytes into the mouse brain to study human astrocyte pathophysiology in the context of Alzheimer´s disease

    Levosimendan increases brain tissue oxygen levels after cardiopulmonary resuscitation independent of cardiac function and cerebral perfusion

    Get PDF
    Prompt reperfusion is important to rescue ischemic tissue; however, the process itself presents a key pathomechanism that contributes to a poor outcome following cardiac arrest. Experimental data have suggested the use of levosimendan to limit ischemia–reperfusion injury by improving cerebral microcirculation. However, recent studies have questioned this effect. The present study aimed to investigate the influence on hemodynamic parameters, cerebral perfusion and oxygenation following cardiac arrest by ventricular fibrillation in juvenile male pigs. Following the return of spontaneous circulation (ROSC), animals were randomly assigned to levosimendan (12 µg/kg, followed by 0.3 µg/kg/min) or vehicle treatment for 6 h. Levosimendan-treated animals showed significantly higher brain PbtO(2) levels. This effect was not accompanied by changes in cardiac output, preload and afterload, arterial blood pressure, or cerebral microcirculation indicating a local effect. Cerebral oxygenation is key to minimizing damage, and thus, current concepts are aimed at improving impaired cardiac output or cerebral perfusion. In the present study, we showed that NIRS does not reliably detect low PbtO(2) levels and that levosimendan increases brain oxygen content. Thus, levosimendan may present a promising therapeutic approach to rescue brain tissue at risk following cardiac arrest or ischemic events such as stroke or traumatic brain injury

    The results of arthroscopic anterior stabilisation of the shoulder using the bioknotless anchor system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shoulder instability is a common condition, particularly affecting a young, active population. Open capsulolabral repair is effective in the majority of cases, however arthroscopic techniques, particularly using suture anchors, are being used with increasing success.</p> <p>Methods</p> <p>15 patients with shoulder instability were operated on by a single surgeon (VK) using BioKnotless anchors (DePuy Mitek, Raynham, MA). The average length of follow-up was 21 months (17 to 31) with none lost to follow-up. Constant scores in both arms, patient satisfaction, activity levels and recurrence of instability was recorded.</p> <p>Results</p> <p>80% of patients were satisfied with their surgery. 1 patient suffered a further dislocation and another had recurrent symptomatic instability. The average constant score returned to 84% of that measured in the opposite (unaffected) shoulder. There were no specific post-operative complications encountered.</p> <p>Conclusion</p> <p>In terms of recurrence of symptoms, our results show success rates comparable to other methods of shoulder stabilisation. This technique is safe and surgeons familiar with shoulder arthroscopy will not encounter a steep learning curve. Shoulder function at approximately 2 years post repair was good or excellent in the majority of patients and it was observed that patient satisfaction was correlated more with return to usual activities than recurrence of symptoms.</p

    Tracing of temporo-entorhinal connections in the human brain: cognitively impaired argyrophilic grain disease cases show dendritic alterations but no axonal disconnection of temporo-entorhinal association neurons

    Get PDF
    Argyrophilic grain disease (AGD), a neurodegenerative disorder, is often associated with mild to moderate Alzheimer’s disease (AD)-related pathology. The development of dementia in AGD is associated with the extent of coexisting AD-related pathology. Therefore, the question arises whether the degenerative changes in the neuronal network of demented AGD-patients represent a distinct pattern or show similar changes of disconnection as considered for AD. We were able to apply DiI-tracing in two human autopsy cases with mild AD-related pathology (controls), in one AD-patient, in one non-demented patient with advanced AD-related pathology, and in three cognitively impaired AGD-patients. DiI-crystals were injected into the entorhinal cortex. Pyramidal neurons of layers III and V of the adjacent temporal neocortex (area 35) were retrogradely marked with the tracer and analyzed. The AD case did not exhibit any retrogradely labeled neurons in the temporal neocortex. In the non-demented case with advanced AD-related pathology, the number of traced neurons was reduced as compared to that in the two controls and in the three AGD cases. In contrast, all three cognitively impaired AGD cases exhibited labeled pyramidal neurons in area 35 in an almost similar number as in the controls. However, alterations in the dendritic tree were observed in the AGD cases. These results show the existence of temporo-entorhinal connections in the adult human brain similar to those reported in animal models. Furthermore, the present study based on seven cases is the first attempt to study changes in the neuronal network in a human tauopathy with targeted axonal tracing techniques. Our findings in three cognitively impaired AGD cases suggest that AGD-related dementia constitutes a distinct disorder with a characteristic pattern of degeneration in the neuronal network

    Astrocyte calcium dysfunction causes early network hyperactivity in Alzheimer's disease

    Get PDF
    Dysfunctions of network activity and functional connectivity (FC) represent early events in Alzheimer's disease (AD), but the underlying mechanisms remain unclear. Astrocytes regulate local neuronal activity in the healthy brain, but their involvement in early network hyperactivity in AD is unknown. We show increased FC in the human cingulate cortex several years before amyloid deposition. We find the same early cingulate FC disruption and neuronal hyperactivity in AppNL-F mice. Crucially, these network disruptions are accompanied by decreased astrocyte calcium signaling. Recovery of astrocytic calcium activity normalizes neuronal hyperactivity and FC, as well as seizure susceptibility and day/night behavioral disruptions. In conclusion, we show that astrocytes mediate initial features of AD and drive clinically relevant phenotypes
    corecore